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Abstract— For a broad class of practically relevant distribution
properties, which includes entropy and support size, nearly all of
the proposed estimators have an especially simple form. Given
a set of independent samples from a discrete distribution, these
estimators tally the vector of summary statistics—the number of
domain elements seen once, twice, etc. in the sample—and output
the dot product between these summary statistics, and a fixed vector
of coefficients. We term such estimators linear. This historical
proclivity towards linear estimators is slightly perplexing, since,
despite many efforts over nearly 60 years, all proposed such
estimators have significantly suboptimal convergence, compared to
the bounds shown in [26], [27].

Our main result, in some sense vindicating this insistence on
linear estimators, is that for any property in this broad class,
there exists a near-optimal linear estimator. Additionally, we give
a practical and polynomial-time algorithm for constructing such
estimators for any given parameters.

While this result does not yield explicit bounds on the sample
complexities of these estimation tasks, we leverage the insights
provided by this result to give explicit constructions of near-
optimal linear estimators for three properties: entropy, 𝐿1 distance
to uniformity, and for pairs of distributions, 𝐿1 distance.

Our entropy estimator, when given 𝑂( 𝑛
𝜖 log𝑛

) independent sam-
ples from a distribution of support at most 𝑛, will estimate the
entropy of the distribution to within additive accuracy 𝜖, with
probability of failure 𝑜(1/𝑝𝑜𝑙𝑦(𝑛)). From the recent lower bounds
given in [26], [27], this estimator is optimal, to constant factor, both
in its dependence on 𝑛, and its dependence on 𝜖. In particular, the
inverse-linear convergence rate of this estimator resolves the main
open question of [26], [28], which left open the possibility that the
error decreased only with the square root of the number of samples.

Our distance to uniformity estimator, when given 𝑂( 𝑚
𝜖2 log𝑚

)
independent samples from any distribution, returns an 𝜖-accurate
estimate of the 𝐿1 distance to the uniform distribution of support
𝑚. This is constant-factor optimal, for constant 𝜖.

Finally, our framework extends naturally to properties of pairs
of distributions, including estimating the 𝐿1 distance and KL-
divergence between pairs of distributions. We give an explicit linear
estimator for estimating 𝐿1 distance to additive accuracy 𝜖 using
𝑂( 𝑛

𝜖2 log𝑛
) samples from each distribution, which is constant-factor

optimal, for constant 𝜖. This is the first sublinear-sample estimator
for this fundamental property.
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1. INTRODUCTION

Our algorithmic toolbox is large. Given independent sam-
ples from a distribution, one might imagine a wide gamut
of algorithmic strategies for recovering information about
the underlying distribution. When limited by data instead
of computational resources, a brute-force search through
hypotheses might be the best option. More specifically,
one might be guided by a Bayesian heuristic, or otherwise
try to optimize “likelihood”. More firmly in the realm
of polynomial-time algorithms, convex programming is a
powerful tool for rapidly traversing a sufficiently structured
search space. At the far extreme of simplicity, are linear
estimators. Given a vector of summary statistics of the
samples, a linear estimator multiplies each entry by a fixed,
position-dependent constant and returns the sum.

For the broad and practically relevant class of “symmet-
ric” distribution properties—which includes entropy, support
size, distance to uniformity, and for pairs of distributions,
such distance metrics as 𝐿1 distance and KL-divergence—
despite the plethora of algorithmic options and a rich his-
tory of study by both the statistics and computer science
communities, nearly all the proposed estimators are these
algorithmically-hollow linear estimators.

Because of, or perhaps despite, their rather pedestrian
nature, linear estimators have many features to recommend:
they are easy to use, easy to describe, and, because of the
especially transparent fashion in which they use the data,
generally easy to analyze. These niceties, though, make it
even more urgent to resolve the question: “How good are
linear estimators?”

Despite much effort constructing linear estimators during
the past century, and perhaps even more effort analyzing
these estimators, for many symmetric distribution properties
the best known linear estimators require many more samples
than necessary to achieve a desired accuracy of estimation.
Specifically, to achieve constant additive error (with high
probability) for any of the following properties: entropy,
distinct elements, 𝐿1 distance and KL-divergence, existing
linear estimators require Θ(𝑛) samples, where 𝑛 is a bound
on the support size of the distributions being sampled, and
is a natural parametrization of the sample complexities of
these estimation problems. Corresponding statements hold
for estimating support size and distance to uniformity, for



which the sample complexities are parameterized slightly
differently.1

Can one do any better? Yes. Recently, in a break from
traditional approaches, we applied the algorithmic power
of linear programming to these estimation tasks, yielding
estimators for entropy and support size that require only
𝑂(𝑛/ log 𝑛) samples [27], [28]. This intriguing state of
affairs provokes the question:

What richness of algorithmic machinery is needed
to effectively estimate these properties?

Answers to this question could serve to guide future en-
deavors to construct and analyze estimators. Additionally,
questions of this nature lie at the philosophical core of the
theoretical approach to computing.

The main result of this paper is the near-optimality of
linear estimators for additively estimating a subclass of sym-
metric distribution properties that includes entropy, variants
of distance to uniformity, and support size (which may be
viewed as a version of the distinct elements problem). Our
proof is constructive, in that we give a relatively practical
and polynomial-time algorithm which, on input 𝑛, 𝑘, and the
property in question, outputs a linear estimator which, on
input 𝑘 independent samples from a distribution of support
at most 𝑛, will with high probability return an 𝜖-accurate
approximation of the property value; this estimator is near-
optimal in the sense that there exist 𝑘′ = 𝑘(1 − 𝑜(1)), and
𝜖′ = 𝜖(1 − 𝑜(1)) and two distributions of support at most
𝑛 whose property values differ by 𝜖′, yet which cannot
be distinguished given sets of 𝑘′ samples, with any fixed
probability greater than 1/2.

1.1. Techniques

Intuitively, this result hinges on a new connection between
constructing “good” lower bounds, and “good” linear esti-
mators.

The canonical approach to creating lower bounds for
property estimation consists of finding a pair of distributions,
𝐴+, 𝐴− with rather different property values, yet which can-
not be distinguished given the specified number of samples.
The condition of indistinguishability is very stringent, and
requires showing that the distribution of summary statistics
derived from a set of samples from 𝐴+ is close in total
variation (𝐿1) distance to the corresponding distribution for
samples from 𝐴−. These distributions of summary statistics
are complex discrete high-dimensional distributions, which
are not well understood. Recently, in [27] we showed a
central limit theorem, and related tools, that help character-
ize these distributions in special cases. This limit theorem
suggests and enables a principled approach to constructing

1The problem of estimating support size is typically parameterized in
terms of a lower bound, 1/𝑛 on the probability of any domain element.
The problem of estimating the distance to the uniform distribution on 𝑚
elements is parameterized by 𝑚.

lower bounds for property estimation. Here, we show the
perhaps surprising result that despite the effort required to
assemble the required tools, the condition of indistinguisha-
bility in this framework can be roughly expressed via an
intuitive set of linear constraints.

Turning, for a moment, to the side of constructing linear
estimators, a natural and popular approach is to represent the
“characteristic function” of the property in question as a lin-
ear combination of “Poisson functions” 𝑝𝑜𝑖(𝑥, 𝑖) ≜ 𝑒−𝑥𝑥𝑖

𝑖! ;
see [11], [20], [21], [22], [25], [30]. Indeed, in [21], [22],
Paninski showed the existence of a sublinear-sample linear
estimator for entropy via a simple nonconstructive proof that
applies the Stone-Weierstrass theorem to approximate the
logarithm function (the characteristic function of entropy)
via the set of Poisson functions. We show that the task of
constructing such a representation of a given accuracy can
also be framed as a set of linear constraints.

Thus general techniques for proving property testing up-
per and lower bounds can both be characterized by linear
constraints. One may then ask how the performance of
the best such lower bound compares to the performance
of the best such upper bound. Optimizing each notion of
performance relative to the corresponding linear constraints
can be expressed as a linear program. Amazingly (though
in retrospect not unexpectedly) these two linear programs—
one for constructing good lower bound example pairs, and
one for constructing good linear estimators, are dual to each
other.

The fundamental complication, however, is that the range
of parameters for which the lower bound program will
be pertinent, and those for which the estimator program
will be pertinent, are non-intersecting. Intuitively, it is clear
that these parameter ranges must be disjoint, as one would
not expect the exact correspondence between optimal lower
bounds of this form, and optimal linear estimators, as
would be implied if these programs were dual for pertinent
parameters. Thus the main technical challenge is relating
optimal values of the lower bound program to optimal values
of the estimator program corresponding to slightly different
parameters. Establishing this relation traverses some beau-
tiful math involving the exponentials of infinite “Poisson-
matrices”.

1.2. Explicit Linear Estimators and Bounds on Sample
Complexity

Given that the proof of near-optimality of the linear
estimators is via duality, unsurprisingly, it does not yield
any explicit bounds on the sample complexities of these
estimation problems. Nevertheless, inspired by numerical so-
lutions to instantiations of these linear programs, we give an
explicit description of a linear estimator for entropy which,
given 𝑂( 1𝜖

𝑛
log𝑛 ) independent samples from a distribution

of support at most 𝑛 returns an 𝜖-accurate estimate with
probability 1−𝑜( 1

𝑝𝑜𝑙𝑦(𝑛) ). Given the recent lower-bounds on



estimating entropy in [27], our linear estimator is optimal,
up to constant factor, both in its dependence on 𝑛 and
its dependence on 𝜖. This is the first explicit sublinear-
sample linear estimator for entropy, and the inverse-linear
convergence rate settles the main open question in [28],
which left the possibility that the accuracy of an optimal
estimator decreases only as the square root of the number
of samples.

The machinery that we develop for constructing the esti-
mator for entropy is robust and general, and we believe it
can be employed to yield near-optimal estimators for other
properties. As a simple illustration of this, in the full version
of the paper we give an explicit constant-factor optimal
linear estimator for estimating the distance to uniformity.

Our entire framework extends to the setting of properties
of pairs of distributions. Given a set of samples from 𝐴,
and a set of samples from 𝐵, how close are 𝐴 and 𝐵, in
total variation distance (𝐿1 distance), or some other distance
metric? This task lies at the heart of data analysis, and it is
both shocking and embarrassing that we do not understand
the sample complexity of this task, or how to estimate this
distance near–optimally. In the full version of this paper we
give an explicit linear estimator for 𝐿1 distance, and show
it is constant factor optimal for any constant accuracy 𝜖 by
giving a simple construction that leverages the lower bounds
of [27].

2. RELATED WORK

Linear programming duality is a beloved tool for showing
the optimality of algorithms. Perhaps the clearest example
of this is the celebrated max-flow min-cut theorem, which
reasons that any feasible flow provides a lower bound on
the optimal min-cut, and vice versa. Our use of duality is
slightly different—rather than having an algorithm based on
a linear program, then using duality to argue that on each
instance the returned value is near optimal, we write a linear
program that searches for algorithms (albeit among this very
restrictive class of linear estimators). We then use duality to
argue that the returned algorithm is near optimal.

2.1. Property Estimation

There has been much work on estimating a variety of
symmetric distribution properties, with contributions from
the statistics, computer science, and information theory
communities. The problems of estimating the support size
(see [10] for several hundred references), and estimating the
entropy have, perhaps, received the most attention, both in
the setting of multiplicative approximations, and additive
approximations.

Tight multiplicative bounds of Ω(𝑛/𝛼2) for approximat-
ing the support size to a multiplicative factor of 𝛼 (where
elements of the distribution are restricted to have probability
mass at least 1/𝑛) are given in [3], [13] though they
are somewhat unsatisfying as the worst-case instance is

distinguishing a distribution with support size one from
a distribution of support size 𝛼2. The first strong lower
bounds for additively approximating the support size were
given in [24], showing that for any constant 𝜖 ∈ (0, 12 ),
any estimator that obtains additive error at most 𝜖𝑛 with
probability at least 2/3 requires at least 𝑛/2Θ(

√
log𝑛⋅log log 𝑛)

samples. Recent work [26], [27] improves this to a tight
bound of Ω( 𝑛

log𝑛 ).
For entropy estimation, Batu et al. [4], [5], [6], Brautbar

et al. [9], Guha et al. [16], and Valiant [29] considered the
problem of multiplicative approximation. For the problem of
additively estimating entropy, recent work [26], [28] gives
an estimator that uses 𝑂( 𝑛

𝜖2 log𝑛 ) samples, and returns an
𝜖 accurate estimate. The recent lower bounds in [26], [27]
show that 𝑂( 𝑛

𝜖 log 𝑛 ) samples are necessary. Thus the depen-
dence on 𝑛 is tight, though the question of whether there
exists an estimator achieving an inverse-linear convergence
rate—as opposed to the much slower inverse square root
rate—remained.

For the problems of estimating distance to uniformity,
and 𝐿1 distance, there has been some work focusing on the
asymmetric error setting: namely, distinguishing a uniform
distribution from one that is far from uniform, and in
the case of 𝐿1 distance, “identity testing”—given samples
from a pair of distributions, distinguishing whether the
two distributions are the same, versus having distance .1.
Algorithms for these tasks require Θ(𝑛1/2), and Θ̃(𝑛2/3)
samples, respectively. [7], [8], [15]

There has been much work on estimating the support size
(and the general problem of estimating frequency moments)
and estimating the entropy in the setting of streaming, in
which one has access to very little memory and can perform
only a single pass over the data [1], [2], [12], [17], [18], [19].

2.2. Linear Estimators for Entropy

There has been a long line of research proposing and
analyzing linear estimators for entropy. Before describing
some of the commonly used estimators, it will be helpful to
define the fingerprint of a set of samples, which, intuitively,
removes all the superfluous label information from the set
of samples.

Definition 1. Given a sequence of samples 𝑋 =
(𝑥1, . . . , 𝑥𝑘), the associated fingerprint, denoted ℱ𝑋 , is the
“histogram of the histogram” of the samples. Formally, ℱ𝑋

is the vector whose 𝑖𝑡ℎ component, ℱ𝑋
𝑖 is the number of

elements in the domain that occur exactly 𝑖 ≥ 1 times in
sample 𝑋 . In cases where the sample 𝑋 is unambiguous,
we omit the superscript.

For estimating entropy, or any other property whose
value is invariant to relabeling the distribution support (a
“symmetric” property), the fingerprint of a sample contains
all the useful information about the sample: for any estimator
that uses the actual samples, there is an estimator of equal



performance that takes as input only the fingerprint of the
samples (see [4], [8], for an easy proof). Note that in some of
the literature the fingerprint is alternately termed the pattern,
histogram, or summary statistics of the sample.

Perhaps the three most commonly used estimators for
entropy are the following [21]:
∙ The ‘naive’ estimator: the entropy of the empirical

distribution, namely, given a fingerprint ℱ derived from
a set of 𝑘 samples, 𝐻𝑛𝑎𝑖𝑣𝑒(ℱ) ≜ ∑

𝑖 ℱ𝑖
𝑖
𝑘 ∣ log 𝑖

𝑘 ∣.
∙ The Miller-Madow corrected Estimator [20]: the

naive estimator 𝐻𝑛𝑎𝑖𝑣𝑒 corrected to try to account for
the second derivative of the logarithm function, namely
𝐻𝑀𝑀 (ℱ) ≜ 𝐻𝑛𝑎𝑖𝑣𝑒(ℱ) + (

∑
𝑖 ℱ𝑖)−1

2𝑘 , though we note
that the numerator of the correction term is sometimes
replaced by various other quantities, see [23].

∙ The jackknifed naive estimator [14]: 𝐻𝐽𝐾(ℱ) ≜ 𝑘 ⋅
𝐻𝑛𝑎𝑖𝑣𝑒(ℱ) − 𝑘−1

𝑘

∑𝑘
𝑗=1𝐻

𝑛𝑎𝑖𝑣𝑒(ℱ−𝑗), where ℱ−𝑗 is
the fingerprint given by removing the contribution of
the 𝑗th sample.

These estimators and their many variants generally per-
form very well provided that all of the elements of the
support occur with large probability. The problem with
these estimators can be summarized as their inability to
appropriately deal with samples from distributions where a
significant portion of of the probability mass lies in domain
elements not represented in the sample. The estimator we
construct in Section 6, in some sense, is specifically designed
to account for this contribution.

No explicit sublinear-sample estimators were known for
additively estimating entropy to within even a constant.
Nevertheless, in [21], [22], Paninski proved the existence of
a sublinear-sample estimator; the proof is non-constructive,
via a direct application of the Stone-Weierstrass theorem
to the set of Poisson functions. Our approach falls within
this framework, though rather than employing the powerful
but nonconstructive Stone-Weierstrass theorem, we explic-
itly construct an estimator, via a Chebyshev polynomials
construction.

This framework, which is described in Section 5.2, seems
well-known in the literature prior to [21], even dating back
to [20] in the 1950’s. The fundamental difficulty, which
we overcome, essentially comes down to approximating
the logarithm function via a linear combination of Poisson
functions (see Section 6). Such a representation has been
attempted in the past, either explicitly or implicitly in [11],
[20], [25], [30], though these works were unable to succeed
in producing an accurate approximation of the logarithm
function in the small-probability regime.

2.3. Comparison with [26], [27], [28]

This work relies heavily on techniques developed recently
in [26], [27], [28], which, for the problems of estimating
support size and entropy, provided the first upper bounds
and the first lower bounds that are constant factor optimal,

for constant additive error. The main result of this current
paper comes from, in a sense, mechanizing the lower bound
approach of [26] (a full version of which may be found in
[27]) and realizing that, once suitably abstracted, the search
for the best lower bound in this framework is dual to the
search for the best linear estimator in the classic framework
mentioned above, of trying to approximate the characteristic
function of a linear property as a linear combination of
Poisson functions (see Definition 6, and Examples 7, 8
and 9 for examples of characteristic functions of several
properties).

The upper bound techniques introduced in [26] on the
surface are very different from those of the current paper.
The estimators of [26] use the data samples to construct a
linear program, whose solution yields the property estimate.
While this current paper uses linear programming to con-
struct estimators, each of the estimators is linear, and thus
involves the computation of a single dot product.

The explicit linear estimators we construct—for entropy,
and in the full version, distance to uniformity, and 𝐿1

distance—rely on a Chebyshev polynomial construction that
was first used nonconstructively in [26] as a proof technique
to demonstrate the performance of the linear programming
estimators constructed there. While the approach of [26]
can also yield sublinear-sample (non-linear) estimators for
distance to uniformity, and, perhaps with some additional
work, 𝐿1 distance, the tighter correspondence between the
estimators of this paper and the lower bound constructions
can yield better estimators: the error of our linear estimator
for entropy decreases inverse linearly with the number of
samples, whereas the estimator of [26] has an inverse square-
root relationship. (See [28] for the details and proof of
correctness of the construction of the estimators of [26].)

3. DEFINITIONS

We state some definitions that will be used throughout.

Definition 2. A distribution on [𝑛] = {1, . . . , 𝑛} is a
function 𝑝 : [𝑛] → [0, 1] satisfying

∑
𝑖 𝑝(𝑖) = 1. Let 𝒟𝑛

denote the set of distributions over domain [𝑛].

Throughout, we use 𝑛 to denote the size of the domain
of our distribution, and 𝑘 to denote the number of samples
that we have access to.

We now define a linear estimator.

Definition 3. A 𝑘-sample linear estimator 𝛼 is defined
by a set of at least 𝑘 coefficients, 𝛼 = (𝛼1, . . . , 𝛼𝑘).
The estimator is defined as the dot product between the
fingerprint vector ℱ of a set of 𝑘 samples, and the vector
𝛼, namely 𝑆𝑘(ℱ) ≜

∑𝑘
𝑖=1 𝛼𝑖ℱ𝑖.

We now define the notion of a symmetric property. Infor-
mally, symmetric properties are those that are invariant to
renaming the domain elements.



Definition 4. A property of a distribution is a function
𝜋 : 𝒟𝑛 → ℝ. A property is symmetric if, for all distributions
𝐷, and all permutations of the support, 𝜎, 𝜋(𝐷) = 𝜋(𝐷∘𝜎),
where 𝐷 ∘ 𝜎 denotes the distribution obtained from 𝐷 by
permuting the support according to 𝜎.

Analogous to the fingerprint of a set of samples, is what
we call the histogram of the distribution, which captures the
number of domain elements that occur with each probability
value.

Definition 5. The histogram of a distribution 𝑝 is a mapping
ℎ : (0, 1]→ ℤ, where ℎ(𝑥) = ∣{𝑖 : 𝑝(𝑖) = 𝑥}∣.

Since ℎ(𝑥) denotes the number of elements that have
probability 𝑥, it follows that

∑
𝑥:ℎ(𝑥) ∕=0 ℎ(𝑥) equals the

support size of the distribution. The probability mass at
probability 𝑥 is 𝑥 ⋅ ℎ(𝑥), thus

∑
𝑥:ℎ(𝑥) ∕=0 𝑥 ⋅ ℎ(𝑥) = 1, for

any histogram that corresponds to a distribution.
It is clear that any symmetric property is a function of

only the histogram of a distribution. Finally, a symmetric
property is linear, if the property value is a linear function
of the histogram:

Definition 6. A symmetric property 𝜋 is linear if there
exists some function 𝑓𝜋 : (0, 1] → ℝ which we term the
characteristic function of 𝜋, such that for any distribution 𝐴
with histogram ℎ,

𝜋(𝐴) =
∑

𝑥:ℎ(𝑥) ∕=0

ℎ(𝑥)𝑓𝜋(𝑥).

We now give several examples of symmetric linear prop-
erties:

Example 7. The (Shannon) entropy of a discrete distri-
bution 𝑝 ∈ 𝒟𝑛 with histogram ℎ is given by 𝐻(ℎ) ≜∑𝑛

𝑖=1 𝑝(𝑖)∣ log 𝑝(𝑖)∣ =
∑

𝑥:ℎ(𝑥) ∕=0 ℎ(𝑥)𝑓(𝑥), for the function

𝑓(𝑥) ≜ 𝑥∣ log 𝑥∣.
Example 8. The support size of a discrete distribution 𝑝 ∈
𝒟𝑛 with histogram ℎ is given by

∑
𝑥:ℎ(𝑥) ∕=0 ℎ(𝑥)𝑓(𝑥), for

the function 𝑓(𝑥) ≜ 1.

Example 9. The total variation distance between a discrete
distribution 𝑝 ∈ 𝒟𝑛 with histogram ℎ and a uniform
distribution on 𝑠 elements can be approximated to within
a factor of 2 as

∑
𝑥:ℎ(𝑥) ∕=0 ℎ(𝑥)𝑓(𝑥), for the function

𝑓(𝑥) ≜
{
𝑥 for 𝑥 ≤ 1

2𝑠

∣𝑥− 1
𝑠 ∣ for 𝑥 > 1

2𝑠 .

It will also be essential to have a distance metric between
distributions with respect to which the class of properties in
question are continuous:

Definition 10. For two histograms ℎ1, ℎ2, we define the
relative earthmover distance between them, 𝑅(ℎ1, ℎ2), as the
minimum cost, over all schemes of moving the probability

mass of the first histogram to yield the second histogram,
where the cost per-unit probability of moving mass from
probability 𝑥 to 𝑦 is ∣ log(𝑥/𝑦)∣.

A distribution property 𝜋 is 𝑐-relative earthmover continu-
ous if for all distributions ℎ1, ℎ2, we have ∣𝜋(ℎ1)−𝜋(ℎ2)∣ ≤
𝑐 ⋅𝑅(ℎ1, ℎ2).

A linear property 𝜋 with characteristic function 𝑓𝜋 is 𝑐-
relative earthmover continuous if for all 𝑥, 𝑦 ∈ (0, 1] we
have ∣ 𝑓𝜋(𝑥)𝑥 − 𝑓𝜋(𝑦)

𝑦 ∣ ≤ ∣ log(𝑥/𝑦)∣.
3.1. Poisson Samples

It will be helpful to have an intuitive understanding of
the distribution of the fingerprint corresponding to a set of
𝑘 samples from histogram ℎ. This distribution intimately in-
volves the Poisson distribution. Throughout, we use 𝑃𝑜𝑖(𝜆)
to denote the Poisson distribution with expectation 𝜆, and
for a nonnegative integer 𝑗, 𝑝𝑜𝑖(𝜆, 𝑗) ≜ 𝜆𝑗𝑒−𝜆

𝑗! denotes the
probability that a random variable distributed according to
𝑃𝑜𝑖(𝜆) takes value 𝑗. Additionally, for integers 𝑖 ≥ 0, we
refer to the function 𝑝𝑜𝑖(𝑥, 𝑖), viewed as a function of the
variable 𝑥, as the 𝑖th Poisson function.

Given a fingerprint corresponding to a set of 𝑘 samples
from a distribution 𝑝, the number of occurrences of any
two elements are not independent; however, if instead of
taking 𝑘 samples, we chose 𝑘′ ← 𝑃𝑜𝑖(𝑘) according to a
Poisson distribution with expectation 𝑘 and then take 𝑘′

samples from 𝑝, the number of occurrences of each domain
element 𝑖 ∈ [𝑛] will be independent random variables with
distributions 𝑃𝑜𝑖 (𝑘 ⋅ 𝑝(𝑖)) . This independence is invaluable
when arguing about the structure of the distribution of such
fingerprints. Since 𝑘′ ← 𝑃𝑜𝑖(𝑘) is closely concentrated
around 𝑘, we may often easily replace 𝑘-sample testing with
𝑃𝑜𝑖(𝑘)-sample testing and benefit from this independence.

We now consider the distribution of the 𝑖th entry of a
𝑃𝑜𝑖(𝑘)-sample fingerprint, ℱ(𝑖). Since the number of occur-
rences of different domain elements are independent, ℱ(𝑖)
is distributed as the sum of 𝑛 independent {0, 1} random
variables 𝑌1, . . . , 𝑌𝑛, where Pr[𝑌𝑗 = 1] = 𝑝𝑜𝑖(𝑘 ⋅ 𝑝(𝑗), 𝑖) is
the probability that the 𝑗th domain element occurs exactly 𝑖
times in sample 𝑋 . Thus

𝐸[ℱ(𝑖)] =
∑
𝑗∈[𝑛]

𝑝𝑜𝑖(𝑘 ⋅ 𝑝(𝑗), 𝑖) =
∑

𝑥:ℎ(𝑥) ∕=0

ℎ(𝑥) ⋅ 𝑝𝑜𝑖(𝑘𝑥, 𝑖),

and from independence, the variances of fingerprint entries
are also easy to work with, and for example are clearly seen
to sum to at most 𝑘.

4. SUMMARY OF RESULTS

Our main theorem shows that linear estimators are near-
optimal for additively estimating the class of linear symmet-
ric distribution properties, provided that they satisfy a mild
continuity condition:

Theorem 1. Let 𝜋 be a symmetric linear property that
is 𝛿(𝑘)-relative earthmover continuous on distributions of



support 𝑛(𝑘). If for some constant 𝑐 > 0 and parameter
𝜖(𝑘) = 𝛿/𝑘𝑜(1), any distributions of support 𝑛 whose 𝜋
values differ by at least 𝜖 are distinguishable with probability
at least 1

2 + 𝑐 in 𝑘 samples, then for each 𝑘 there exists
a linear estimator that estimates 𝜋 on distributions of
support 𝑛 to within error (1 + 𝑜(1))𝜖 using (1 + 𝑜(1))𝑘
samples, and which has probability of failure 𝑜( 1

𝑝𝑜𝑙𝑦(𝑘) ).
Additionally, such a linear estimator is given as the solution
to a polynomial-sized linear program.

To clarify, the above theorem trivially implies the follow-
ing corollary:

Corollary. Given a symmetric linear property 𝜋 that is 1-
relative earthmover continuous (such as entropy), if there
exists an estimator which on input 𝑘 independent samples
from any distribution 𝐴 of support 𝑛 outputs a value 𝑣 such
that ∣𝑣− 𝜋(𝐴)∣ < 𝜖 with probability .51, then there exists a
linear estimator which, given 1.01𝑘 samples, outputs a value
𝑣′ such that ∣𝑣′ − 𝜋(𝐴)∣ ≤ 2.01𝜖, with probability > .9999,
provided 𝜖 ≥ 1

log100 𝑘
and 𝑘 is sufficiently large.

While Theorem 1 does not yield bounds on the sample
complexities of these estimation tasks, we leverage the
insights provided by key components of the proof of The-
orem 1 to give explicit constructions of near-optimal linear
estimators for entropy (Section 6), distance to uniformity
(see full version), and 𝐿1 distance between pairs of dis-
tributions (see full version). These estimators significantly
improve upon all previously proposed estimators for these
properties.

Theorem 2. For any 𝜖 > 1
𝑛0.03 , the estimator described in

Construction 17, when given 𝑂( 𝑛
𝜖 log𝑛 ) independent samples

from a distribution of support at most 𝑛 will compute an
estimate of the entropy of the distribution, accurate to within
𝜖, with probability of failure 𝑜(1/𝑝𝑜𝑙𝑦(𝑛)).

We note that the performance of this estimator, up to con-
stant factors, matches the lower bounds shown in [26], [27],
both in terms of the dependence on 𝑛 and the dependence on
𝜖. In particular, this resolves the main open question posed
in [26], [28] as to whether the sample complexity increases
linearly versus quadratically with the inverse of the desired
accuracy, 1/𝜖.

Theorem 3. For any 𝜖 > 1
4 log𝑚 , there is an explicit linear

estimator that, when given 𝑂
(

1
𝜖2 ⋅ 𝑚

log𝑚

)
independent sam-

ples from a distribution of any support, will compute the 𝐿1

distance to 𝑈𝑛𝑖𝑓(𝑚) to within accuracy 𝜖, with probability
of failure 𝑜(1/𝑝𝑜𝑙𝑦(𝑚)).

This is the first 𝑜(𝑚) sample linear estimator for distance
to uniformity, and we note that the lower bounds shown
in [26], [27] imply that for any constant error 𝜖, this
estimator is optimal, to constant factor. This tight bound
of Θ(𝑚/ log𝑚) on the number of samples required to yield

constant error contrasts with the tight bound of Θ(𝑚1/2)
shown in [7], [15] for the related problem of distinguishing
a uniform distribution on 𝑚 samples from one that has
constant distance from such a distribution.

Theorem 4. There is an explicit linear estimator for 𝐿1

distance and a constant 𝑐 such that for any 𝜖 > 𝑐√
log𝑛

,

the estimator, when given 𝑂( 𝑛
𝜖2 log𝑛 ) independent samples

from each of two distributions of support at most 𝑛, will
compute an estimate of the 𝐿1 distance between the pair of
distributions, accurate to within 𝜖, with probability of failure
𝑜(1/𝑝𝑜𝑙𝑦(𝑛)). Further, this number of samples has optimal
dependence on 𝑛, as, for any constants 0 < 𝑎 < 𝑏 < 1

2 , there
exists a pair of distributions with support at most 𝑛 such that
distinguishing whether their 𝐿1 distance is less than 𝑎 or
greater than 𝑏 with probability 2

3 requires Ω( 𝑛
log𝑛 ) samples.

This is the first sublinear-sample estimator for this funda-
mental property, and the lower bound (which follows easily
from [27]) improves upon the previous best lower bound of
𝑛/2𝑂(

√
log𝑛) shown in [29].

5. LOWER BOUNDS AND ESTIMATORS

We start by describing an intuitive approach to construct-
ing lower bound instances for the task of estimating a given
linear property, and then describe a natural and well-known
approach to constructing linear estimators. It will then be
immediate that these two approaches are related via linear
programming duality. Finally, in Section 5.2.1 we examine
the crux of the difficulty in employing this correspondence
to our ends.

5.1. Lower Bounds on Property Estimation

Given a property 𝜋, a number of samples 𝑘, and an upper
bound 𝑛 on the support size of distributions in question,
we wish to construct lower-bounds via a principled—and in
some sense mechanical—approach. Specifically, we would
like to find two distributions 𝐴+, 𝐴− (of support at most
𝑛) which are extremal in the sense that they maximize 𝛿 =
𝜋(𝐴+) − 𝜋(𝐴−) while being indistinguishable (with high
probability) given sets of 𝑘 independent samples from each.
Trivially, such a pair implies that no algorithm, on input 𝑘
independent samples from a distribution of support at most
𝑛, can estimate property 𝜋 to within ±𝛿/2.

At least intuitively, 𝐴+ and 𝐴− will be difficult to
distinguish, given sets of 𝑘 samples, if their fingerprint
expectations are very similar (relative to the size of the co-
variance of the distribution of fingerprints). The central limit
theorem for “generalized multinomial” distributions given
in [27] makes this intuition rigorous. Since these fingerprint
expectations are simply linear functions of the histograms,
this constraint that 𝐴+ and 𝐴− should be indistinguishable
can be characterized by a set of linear constraints on the
histograms of 𝐴+ and 𝐴−. Additionally, the constraint that
𝐴+ and 𝐴− have support size at most 𝑛 is a linear constraint



on the histograms:
∑

𝑥:ℎ𝐴(𝑥) ∕=0 ℎ𝐴(𝑥) ≤ 𝑛. Since we are
concerned with a symmetric linear property, 𝜋, which is
given as 𝜋(𝐴) ≜

∑
𝑥:ℎ𝐴(𝑥) ∕=0 ℎ𝐴(𝑥)𝑓𝜋(𝑥), for some func-

tion 𝑓𝜋, our aim of maximizing the discrepancy in property
values, 𝜋(𝐴+) − 𝜋(𝐴−), is just the task of optimizing a
linear function of the histograms. Thus, at least intuitively,
we can represent the task of constructing an optimal lower-
bound instance (𝐴+, 𝐴−), as a semi-infinite linear program
whose variables are ℎ𝐴+(𝑥), ℎ𝐴−(𝑥), for 𝑥 ∈ (0, 1].

Before writing the linear program, there are a few details
we should specify. Rather than solving for histogram values
ℎ𝐴+(𝑥), it will be more convenient to solve for variables 𝑦+𝑥 ,
which are related to histogram values by 𝑦+𝑥 ≜ ℎ𝐴+(𝑥) ⋅ 𝑥.
Thus 𝑦+𝑥 represents the amount of probability mass ac-
counted for by ℎ𝐴+(𝑥). Thus

∑
𝑥 𝑦

+
𝑥 = 1 for any distri-

bution 𝐴+. For reasons which will become clear, we will
also restrict ourselves to the “infrequently-occurring” portion
of the histogram: namely, we will only be concerned with
fingerprint indices up to 𝑘𝑐1 , for a parameter 𝑐1 ∈ (0, 1), and
will only solve for histogram entries corresponding to proba-
bilities 𝑥 ≤ 1

2
𝑘𝑐1

𝑘 . Finally, to avoid the messiness that comes
with semi-infinite linear programs, we will restrict ourselves
to a finite set of variables, corresponding to 𝑥 values in some
set 𝑋 ⊂ (0, 𝑘

𝑐1

2𝑘 ) that consists of a polynomially-fine mesh
of points, the details of which are largely irrelevant.

Definition 11. The Lower Bound LP corresponding to
parameters 𝑘, 𝑐1, 𝑐2, 𝑋 , and property 𝜋 satisfying 𝜋(𝐴) ≜∑

𝑥:ℎ(𝑥) ∕=0 ℎ𝐴(𝑥)𝑓𝜋(𝑥), is the following:

Maximize:
∑

𝑥∈𝑋
𝑓𝜋(𝑥)
𝑥 (𝑦+𝑥 − 𝑦−𝑥 )

Subject to:
∀𝑖 ≤ 𝑘𝑐1 ,

∑
𝑥 (𝑦

+
𝑥 − 𝑦−𝑥 ) ⋅ 𝑝𝑜𝑖(𝑥𝑘, 𝑖) ≤ 𝑘−𝑐2

∀𝑖 ≤ 𝑘𝑐1 ,
∑

𝑥 (𝑦
+
𝑥 − 𝑦−𝑥 ) ⋅ 𝑝𝑜𝑖(𝑥𝑘, 𝑖) ≥ −𝑘−𝑐2∑

𝑥∈𝑋 𝑦+𝑥 + 𝑦−𝑥 ≤ 2∑
𝑥∈𝑋

𝑦+
𝑥

𝑥 ≤ 𝑛 and
∑

𝑥∈𝑋
𝑦−
𝑥

𝑥 ≤ 𝑛
∀𝑥 ∈ 𝑋, 𝑦+𝑥 ≥ 0, 𝑦−𝑥 ≥ 0

In words, this linear program maximizes the discrepancy
in property values of the distributions corresponding to 𝑦+

and 𝑦− subject to the following conditions: the first two
constraints ensure that the fingerprint expectations of the
two distributions are similar, the third condition ensures that
𝑦+ and 𝑦− together represent at most 2 units of probability
mass, the fourth condition ensures that the two distributions
have support at most 𝑛, and the last condition ensures
that all elements of the support are assigned nonnegative
probability values.

We now argue that the intuition for the above linear
program is well founded. For any reasonably well-behaved
property 𝜋, given a solution to the above linear program
𝑦+, 𝑦− that has objective function value 𝑣, we will construct
distributions 𝐴+, 𝐴− that are indistinguishable given 𝑘 sam-
ples, and satisfy 𝜋(𝐴+)−𝜋(𝐴−) ≥ 𝑣−𝜖 for some tiny 𝜖. As

shifting a property by a constant, 𝜋 → 𝜋+𝐶 does not affect
the property estimation problem, for the sake of convenience
we assume that the property takes value 0 on the trivial
distribution with support 1, though the following proposition
remains true for rather extreme (though not unbounded)
shifts away from this.

Proposition 12. Let 𝜋 be a 𝛿-relative earthmover continuous
property that takes value 0 on the trivial distribution. Given
any feasible point 𝑦+, 𝑦− to the Lower Bound LP of Defi-
nition 11 that has objective function value 𝑣, then, provided
𝑘𝑐1 ∈ [log2 𝑘, 𝑘1/32] and 𝑐2 ≥ 1

2 + 6𝑐1, there exists a pair
of distributions 𝐴+, 𝐴− of support at most 𝑛 such that:

∙ 𝜋(𝐴+)− 𝜋(𝐴−) > 𝑣 ⋅ (1− 𝑜(1))−𝑂(𝛿 ⋅ 𝑘−𝑐1 log 𝑘),
∙ no algorithm on 𝑃𝑜𝑖(𝑘)-samples can distinguish 𝐴+

from 𝐴− with probability 1−Θ(1).

To construct 𝐴+, 𝐴− from the solution 𝑦+, 𝑦−, there are
three hurdles. First, 𝑦+𝑥 , 𝑦

−
𝑥 must be rounded so as to be

integer multiples of 1/𝑥, since the corresponding histograms
must be integral. Next, we must ensure that 𝐴+, 𝐴− have
total probability mass 1. Most importantly, we must ensure
that 𝐴+, 𝐴− are actually indistinguishable—i.e. that we can
successfully apply the central limit theorem of [27]—a more
stringent condition than simply having similar fingerprint
expectations. These three tasks must be accomplished in a
delicate fashion so as to ensure that 𝜋(𝐴+) − 𝜋(𝐴−) ≈ 𝑣.
The explicit construction, and proof of Proposition 12 are
included in the full version of the paper.

5.2. Constructing Linear Estimators

Perhaps the most natural approach to constructing es-
timators for linear properties, dating back at least to the
1950’s, [20] and, implicitly, far longer, is to approximate
the characteristic function of the desired linear property
as a linear combination of Poisson functions. To see the
intuition for this, consider a property 𝜋 such that 𝜋(𝐴) ≜∑

𝑥:ℎ𝐴(𝑥) ∕=0 ℎ𝐴(𝑥)𝑓𝜋(𝑥), and assume that there exist co-
efficients 𝛽 = 𝛽1, 𝛽2, . . . such that, for all 𝑥 ∈ (0, 1],∑∞

𝑖=1 𝛽𝑖𝑝𝑜𝑖(𝑥𝑘, 𝑖) = 𝑓𝜋(𝑥). Thus for a distribution with
histogram ℎ, we have∑
𝑥:ℎ(𝑥) ∕=0

ℎ(𝑥)𝑓𝜋(𝑥) =
∑

𝑥:ℎ(𝑥) ∕=0

ℎ(𝑥)
∑
𝑖≥1

𝛽𝑖𝑝𝑜𝑖(𝑘𝑥, 𝑖)

=
∑
𝑖≥1

𝛽𝑖
∑

𝑥:ℎ(𝑥) ∕=0

ℎ(𝑥)𝑝𝑜𝑖(𝑘𝑥, 𝑖)

=
∑
𝑖≥1

𝛽𝑖𝐸[ℱ(𝑖)],

where 𝐸[ℱ(𝑖)] is the expected 𝑖th fingerprint entry derived
from 𝑃𝑜𝑖(𝑘) independent samples. By linearity of expec-
tation, this quantity is precisely the expected value of the
linear estimator given by the coefficients 𝛽, and thus such
an estimator would have zero bias. Additionally, since we
expect the fingerprint entries to be closely concentrated



about their expectations, such an estimator would also have
relatively small variance, provided that the magnitudes of
the coefficients ∣𝛽𝑖∣ are small relative to 1/

√
𝑘. (Roughly,

the contribution to the variance of the estimator from the
𝑖th fingerprint entry is the product of ∣𝛽𝑖∣2 and the variance
of the 𝑖th fingerprint entry, while the total variance of all the
fingerprint entries is roughly 𝑘.)

For several reasons which will become apparent, instead
of approximating the function 𝑓𝜋(𝑥) as

∑∞
𝑖=1 𝛽𝑖𝑝𝑜𝑖(𝑘𝑥, 𝑖),

we instead approximate the function 𝑓𝜋(𝑥)
𝑥 as the 0-indexed

sum
∑∞

𝑖=0 𝑧𝑖𝑝𝑜𝑖(𝑘𝑥, 𝑖). These two approaches are formally
identical by setting 𝛽𝑖 = 𝑖

𝑘 ⋅ 𝑧𝑖−1, since 𝑥 ⋅ 𝑝𝑜𝑖(𝑘𝑥, 𝑖) =
𝑝𝑜𝑖(𝑘𝑥, 𝑖+ 1) 𝑖+1

𝑘 .
The following proposition formalizes this intuition, estab-

lishing the requisite relationship between the magnitudes of
the coefficients, error in approximating the function 𝑓𝜋(𝑥)

𝑥 ,
and the performance of the derived estimator.

Proposition 13. Let 𝜋 be a linear symmetric property such
that for any histogram ℎ, we have 𝜋(ℎ) ≜

∑
𝑥:ℎ(𝑥) ∕=0 ℎ(𝑥)𝑥⋅

𝑟(𝑥), for some function 𝑟 : (0, 1]→ ℝ. Given integers 𝑘, 𝑛,
and a set of coefficients 𝑧0, 𝑧1, . . . such that if we define the
function 𝑒𝑟𝑟 : (0, 1]→ ℝ by

𝑟(𝑥) = 𝑒𝑟𝑟(𝑥) +
∑
𝑖≥0

𝑧𝑖𝑝𝑜𝑖(𝑥𝑘, 𝑖),

and if for positive real numbers 𝑎, 𝑏, 𝑐 the following condi-
tions hold:

1) ∣𝑒𝑟𝑟(𝑥)∣ < 𝑎+ 𝑏
𝑥 ,

2) for all 𝑗 ≥ 1 let 𝛽𝑗 = 𝑗
𝑘 ⋅ 𝑧𝑗−1 with 𝛽0 = 0, then

for any 𝑗, ℓ such that ∣𝑗 − ℓ∣ ≤ √
𝑗 log 𝑘 we have

∣𝛽𝑗 − 𝛽ℓ∣ ≤ 𝑐
√
𝑗√
𝑘

Then the linear estimator given by coefficients 𝛽1, . . . , 𝛽𝑘,
when given a fingerprint derived from a set of 𝑘 independent
samples chosen from a distribution of support at most 𝑛 will
estimate the property value with error at most 𝑎 + 𝑏𝑛 +
𝑐 log 𝑘, with probability of failure 𝑜(1/𝑝𝑜𝑙𝑦(𝑘)).

We note that the condition on the magnitude of the error
of approximation: ∣𝑒𝑟𝑟(𝑥)∣ < 𝑎 + 𝑏

𝑥 , is designed to take
into account the inevitable increase in this error as 𝑥 → 0.
Intuitively, this increase in error is offset by the bound on
support size: for a distribution of support at most 𝑛, the
amount of probability mass at probability 𝑥 is bounded by
𝑛𝑥, and thus provided that the error at 𝑥 is bounded by 𝑏

𝑥 ,
the error of the derived estimator will be at most 𝑛𝑥 𝑏

𝑥 = 𝑛𝑏.
The task of finding these coefficients 𝑧𝑖, can be expressed

as the following linear program:

Definition 14 (The Linear Estimator LP).
Minimize: 2𝑧𝑎 + 𝑛 ⋅ (𝑧𝑏+ + 𝑧𝑏−) + 𝑘−𝑐2

∑𝑘𝑐1

𝑖=0(𝑧
+
𝑖 + 𝑧−𝑖 )

Subject to:
∀𝑥 ∈ 𝑋,

∑𝑘𝑐1

𝑖=0 𝑝𝑜𝑖(𝑥𝑘, 𝑖)(𝑧
+
𝑖 − 𝑧−𝑖 )
≥ 𝑓𝜋(𝑥)

𝑥 − (𝑧𝑎 + 𝑧𝑏−
𝑥 )

∀𝑥 ∈ 𝑋,
∑𝑘𝑐1

𝑖=0 𝑝𝑜𝑖(𝑥𝑘, 𝑖)(𝑧
+
𝑖 − 𝑧−𝑖 )
≤ 𝑓𝜋(𝑥)

𝑥 + 𝑧𝑎 + 𝑧𝑏+

𝑥∀𝑖 ∈ [𝑘𝑐1 ], 𝑧+𝑖 ≥ 0, 𝑧−𝑖 ≥ 0,
𝑧𝑎 ≥ 0, 𝑧𝑏+ ≥ 0, 𝑧𝑏− ≥ 0.

To see the relation between the above definition and
Proposition 13, we let the coefficients 𝑧𝑖 = 𝑧+𝑖 − 𝑧−𝑖 . The
parameter 𝑎 in the proposition corresponds to 𝑧𝑎 in the
LP, and the parameter 𝑏 in the proposition corresponds to
max(𝑧𝑏+, 𝑧𝑏−). The first two sets of constraints ensure that
𝑧𝑎, 𝑧𝑏+, 𝑧𝑏− capture the bias of the estimator. The objective
function then minimizes this bias, while also penalizing
unduly large coefficients.

5.2.1. So Close, Yet So Far: The impetus for our main
result is the observation that the Lower Bound LP of
Definition 11 and the Linear Estimator LP of Definition 14
are dual linear programs. Complications arise, however,
when one considers the allowable settings of the parame-
ters. Intuitively, the Lower Bound LP only begins to make
sense when 𝑐2 > 1/2—namely, when the discrepancy in
fingerprint expectations of the implicitly described pair of
distributions is less than 𝑘1/2, since the standard deviation
in fingerprint entries can never exceed this value. Conversely,
the Linear Estimator LP yields reasonable estimators only
when 𝑐2 < 1/2, since this corresponds to coefficients at
most 1/𝑘1/2, which, coupled with the variance in fingerprint
entries of up to 𝑘, would lead to an estimator having constant
variance.

As our goal is to find a linear estimator of near-optimal
performance, we start with a solution to the Lower Bound LP
with objective value 𝑣, which, provided 𝑐2 >

1
2 is suitably

chosen, yields a lower bound of ≈ 𝑣
2 , on the accuracy of

estimating (via any algorithm) the desired property given
𝑘 samples. We invoke duality to yield a 𝑘-sample linear
estimator with coefficients described by the vector 𝑧, and
with objective value also 𝑣 in the Linear Estimator LP, with
parameter 𝑐2 > 1

2 as above. The issue is that the entries of 𝑧
may be unsuitably large, as the only bound we have on them
is that of the objective function of the Linear Estimator LP,
which yields that their sum is at most 𝑣 ⋅ 𝑘𝑐2 . Since 𝑐2 > 1

2 ,
the entries may be bigger than

√
𝑘, which corresponds to an

estimator with inadmissibly super-constant variance.

5.3. Matrix Exponentials of Poisson Matrices

The aim of this section is to transform a solution to the
Linear Estimator LP with 𝑐2 > 1/2 into a related estimator
that: 1) has smaller coefficients; 2) takes slightly more
samples; and 3) has almost unchanged bias. Intuitively, we
have a vector of Poisson coefficients, 𝑧, whose magnitudes
exceed

√
𝑘, yet whose linear combination, the function 𝑔 :

[0,∞)→ ℝ defined as 𝑔(𝑥) =
∑∞

𝑖=0 𝑧(𝑖)⋅𝑝𝑜𝑖(𝑥𝑘, 𝑖) closely
approximates 𝑓𝜋(𝑥)

𝑥 , and thus, despite its huge coefficients,
the resulting function is small and well-behaved. The task
is to transform this into a different linear combination that



has smaller coefficients and is almost equally well-behaved.
The principal tool we may leverage is the increased number
of samples we have. While 𝑝𝑜𝑖(𝑥𝑘, 𝑖) captures the Poisson
functions corresponding to taking 𝑘 samples, if we instead
take 𝑘

𝛼 samples for 𝛼 < 1, then the corresponding functions
are 𝑝𝑜𝑖(𝑥𝑘𝛼 , 𝑖), which are “thinner” than the original Poisson
functions. To phrase the intuition differently, if the target
function 𝑓𝜋(𝑥)

𝑥 is so finely structured that approximating it
with “fat” Poisson functions requires coefficients exceeding√
𝑘, we might hope that using “thinner” Poisson functions

will lower the required coefficients.
We note that it is straightforward to reexpress a linear

combination of Poisson functions in terms of “thinner”
Poisson functions. Intuitively, this is the process of simulat-
ing a 𝑃𝑜𝑖(𝑘)-sample estimator using 𝑃𝑜𝑖( 𝑘𝛼 ) samples, and
corresponds to subsampling. We let 𝑧𝛼 denote the vector
of coefficients induced from subsampling by 𝛼—that is,
𝑧𝛼(ℓ) =

∑ℓ
𝑖=0 𝑧(𝑖)𝑃𝑟[𝐵𝑖𝑛(ℓ, 𝛼) = 𝑖], where 𝐵𝑖𝑛(ℓ, 𝛼)

represents the binomial distribution taking ℓ trials each with
success probability 𝛼. The question becomes: how does the
magnitude of 𝑧𝛼 decrease with 𝛼?

We show that the square of the 𝐿2 norm of the vector
𝑧𝛼 is a quadratic form in 𝑧, defined by an infinite matrix
𝑀𝛼. We are able to analyze these norms because of the
fortuitous form of its matrix logarithm: there exists an
infinite tri-diagonal matrix 𝐴 such that for all 𝛼 ∈ (0, 1),
𝑀𝛼 = 1

𝛼𝑒
(1−𝛼)𝐴. We show this via the Gauss relations

for contiguous hypergeometric functions. Our main result,
Theorem 1, then follows from the fact that the quadratic
form ∣∣𝑧𝛼∣∣22 = 𝑧𝑒𝛼𝑋𝑧⊺ is a log-convex function of 𝛼, for
arbitrary 𝑧 and 𝑋 , and thus we can bound the size of the
entries of the coefficient vector 𝑧𝛼, for 𝛼 in the interval
(0, 1), by interpolating between the values of its 𝐿2 norm
at the endpoints. Details are given in the full version of the
paper.

6. AN OPTIMAL LINEAR ESTIMATOR FOR ENTROPY

In this section we describe an explicit linear estimator
for entropy, which, given as input 𝑘 = Ω

(
𝑛

𝜖 log 𝑛

)
samples

from a distribution of support at most 𝑛 will return an
estimate of the entropy accurate to within 𝜖, with probability
of failure 𝑜(1/𝑝𝑜𝑙𝑦(𝑛)). These bounds match the lower
bounds on estimating entropy given in [27] both in terms
of the dependence on 𝑛, and the dependence on the desired
accuracy, 𝜖, and, in particular show that the convergence rate
is inverse linear in the number of samples, as opposed to the
slower inverse square root which is generally expected.

Our estimator is based on an accurate approximation of
the logarithm function as a low-weight sum of the Poisson
functions. The key technical insight is the strengthening and
re-purposing of a Chebyshev polynomial construction which
was employed in [28] as a component of an ”earthmoving
scheme”. Here, we use this construction to turn the basis
of Poisson functions into a more adroit basis of “skinny”

bumps, which are, in a very rough sense, like the Poisson
functions compressed by a factor of log 𝑘 towards the origin.
Intuitively, this superconstant factor is what allows us to
construct a sublinear-sample estimator.

Perhaps the most natural primitives for constructing func-
tions that resemble “skinny bumps” are the trigonometric
functions, 𝑐𝑜𝑠(𝑛𝑥), for 𝑛 = 0, 1, 2, . . . . Since each Poisson
function 𝑝𝑜𝑖(𝑥, 𝑖) is a degree 𝑗 polynomial in 𝑥, multiplied
by an exponential 𝑒−𝑥, we instead work with the polynomial
equivalent of the trigonometric functions: the Chebyshev
polynomials, where the 𝑗th Chebyshev polynomial 𝑇𝑗 is
defined so as to satisfy 𝑇𝑗(cos(𝑦)) = cos(𝑗 ⋅ 𝑦).
Definition 15. The Chebyshev bump scheme
is defined in terms of 𝑘 as follows. Let
𝑠 = (0.3) log 𝑘. Define 𝑔1(𝑦) =

∑𝑠−1
𝑗=−𝑠 cos(𝑗𝑦). Define

𝑔2(𝑦) = 1
16𝑠

(
𝑔1(𝑦 − 3𝜋

2𝑠 ) + 3𝑔1(𝑦 − 𝜋
2𝑠 ) + 3𝑔1(𝑦 +

𝜋
2𝑠 )

+𝑔1(𝑦 +
3𝜋
2𝑠 )

)
, and, for 𝑖 ∈ {1, . . . , 𝑠 − 1} define

𝑔𝑖3(𝑦) = 𝑔2(𝑦 − 𝑖𝜋
𝑠 ) + 𝑔2(𝑦 + 𝑖𝜋

𝑠 ), and 𝑔03 = 𝑔2(𝑦), and
𝑔𝑠3 = 𝑔2(𝑦 + 𝜋). Let 𝑡𝑖(𝑥) be the linear combination
of Chebyshev polynomials so that 𝑡𝑖(cos(𝑦)) = 𝑔𝑖3(𝑦).
We thus define 𝑠 + 1 functions, the “skinny bumps”,
to be 𝐵𝑖(𝑥) = 𝑡𝑖(1 − 𝑥𝑘

2𝑠 )
∑𝑠−1

𝑗=0 𝑝𝑜𝑖(𝑥𝑘, 𝑗), for
𝑖 ∈ {0, . . . , 𝑠}. That is, 𝐵𝑖(𝑥) is related to 𝑔𝑖3(𝑦) by
the coordinate transformation 𝑥 = 2𝑠

𝑘 (1 − cos(𝑦)), and
scaling by

∑𝑠−1
𝑗=0 𝑝𝑜𝑖(𝑥𝑘, 𝑗). For these bumps, define

𝑐𝑖 =
2𝑠
𝑘 (1− cos( 𝑖𝜋𝑠 )).

The following lemma shows that each of the Chebyshev
bumps defined above can be expressed as a linear com-
bination of the Poisson functions, having relatively small
coefficients—and thus eventually leading to an estimator
with small variance.

Lemma 16. Each 𝐵𝑖(𝑥) may be expressed as∑∞
𝑗=0 𝑎𝑖𝑗𝑝𝑜𝑖(𝑘𝑥, 𝑗) for 𝑎𝑖𝑗 satisfying

∑∞
𝑗=0 ∣𝑎𝑖𝑗 ∣ ≤ 𝑘0.4

We are now prepared to define our estimator. We start by
defining the coefficients {𝑧𝑖} such that

∑
𝑖≥0 𝑧𝑖⋅𝑝𝑜𝑖(𝑥𝑘, 𝑖) ≈

log 𝑥.

Construction 17. As in the previous definition, let 𝑠 =
(0.3) log 𝑘. Define the interpolation function 𝐼 : ℝ → ℝ

such that 𝐼(𝑦) = 0 for 𝑦 ≤ 𝑠
4 , 𝐼(𝑦) = 1 for 𝑦 ≥ 𝑠

2 , and
𝐼(𝑦) is continuous, and four-times differentiable, where for
𝑖 ∈ 1, . . . , 4, the magnitude of the 𝑖th derivative is at most
𝑐/𝑠𝑖, for some fixed constant 𝑐. Such a function 𝐼 can be
easily constructed.

Let 𝑓(𝑦) ≜ 𝐼(𝑦)
[

1
2𝑦 + log 𝑦 − log 𝑘

]
, and provisionally

set 𝑧𝑖 ≜ 𝑓(𝑖). Note that
∑∞

𝑖=0 𝑧𝑖 ⋅ 𝑝𝑜𝑖(𝑥𝑘, 𝑖) accurately
represents the logarithm function via the Poisson bumps in
the interval [ 𝑠

2𝑘 , 1]; the 1
2𝑦 term corrects for errors due to

to the concavity of the logarithm function.



We will now use the skinny Chebyshev bumps to approx-
imate the function 𝑣(𝑥) defined as

𝑣(𝑥) ≜
{
log 𝑥− 𝐼(2𝑘𝑥)

∑∞
𝑖=0 𝑝𝑜𝑖(𝑥𝑘, 𝑖)𝑓(𝑖) for 𝑥 ≥ 1

𝑘𝑠

log( 1
𝑘𝑠 )− 1 + 𝑥𝑠𝑘 for 𝑥 ≤ 1

𝑘𝑠

Thus 𝑣(𝑥) is twice differentiable for 𝑥 > 0, 𝑣(𝑥) ≈ 0 for
𝑥 > 𝑠

2𝑘 , 𝑣(𝑥) = log 𝑥 for 𝑥 ∈ (1/𝑘𝑠, 𝑠
8𝑘 ), and 𝑣(𝑥) is a

linear approximation to log 𝑥 for 𝑥 < 1/𝑘𝑠.
Define the coefficient 𝑏𝑖 of the 𝑖th Chebyshev bump 𝐵𝑖,

with “center” 𝑐𝑖 = 2𝑠
𝑘

(
1− 𝑐𝑜𝑠

(
𝑖𝜋
𝑠

))
, to be 𝑣(𝑐𝑖). To

conclude the construction, letting the 𝑖th Chebyshev bump
𝐵𝑖 be represented as a sum of Poisson functions, as guar-
anteed by Lemma 16: 𝐵𝑖(𝑥) =

∑
𝑗 𝑎𝑖,𝑗𝑝𝑜𝑖(𝑥𝑘, 𝑗), for each

𝑖 ∈ {0, . . . , 𝑠}, increment 𝑧𝑗 by
∑

𝑖 𝑎𝑖,𝑗𝑣(𝑐𝑖).
Define the linear estimator given by coefficients

𝛽1, . . . , 𝛽𝑘, where 𝛽𝑖 ≜ 𝑧𝑖−1 ⋅ 𝑖
𝑘 .

In the full version of this paper, we explicate this con-
struction and prove Theorem 2.
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